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Abstract. We propose a scheme for constructing classical spin Hamiltonians from Hunds coupled spin-
fermion models in the limit JH/t → ∞. The strong coupling between fermions and the core spins requires
self-consistent calculation of the effective exchange in the model, either in the presence of inhomogeneities
or with changing temperature. In this paper we establish the formalism and discuss results mainly on the
“clean” double exchange model, with self consistently renormalised couplings, and compare our results with
exact simulations. Our method allows access to system sizes much beyond the reach of exact simulations,
and we can study transport and optical properties of the model without artificial broadening. The method
discussed here forms the foundation of our papers [Phys. Rev. Lett. 91, 246602 (2003), and Phys. Rev.
Lett. 92, 126602 (2004)].

PACS. 71.15.Pd Molecular dynamics calculations (Car-Parrinello) and other numerical simulations –
75.10.Hk Classical spin models – 72.15.-v Electronic conduction in metals and alloys

1 Introduction

The double exchange (DE) model was introduced by
Zener [1] in 1951 to motivate ferromagnetism in the per-
ovskite manganites. In contrast to ‘Heisenberg like’ cou-
pling between localised spins, the effective interaction in
‘double exchange’ arises from optimisation of carrier ki-
netic energy in the spin background. The intimate cor-
relation between spin configuration and electron motion
had, till recently, restricted the study of the DE model to
mostly qualitative analysis or mean field theory. The origi-
nal proposal of Zener was followed up [2] by Anderson and
Hasegawa, who clarified the physics of the coupled spin-
fermion system in a two site model, and de Gennes [3] who
presented a thermodynamic calculation and a phase di-
agram (incorporating antiferromagnetic superexchange).
He produced the first estimate of transition tempera-
ture (Tc) in the model. The thermodynamic transition
within double exchange was also studied [4] by Kubo
and Ohata. This short list essentially exhausts activity
on the double exchange problem prior to the ‘manganite
renaissance’.

The discovery of colossal magnetoresistance (CMR)
and a variety of magnetic phases in the manganites [5]
led to renewed interest in the DE model. In addition,
the availability of powerful analytical and numerical tools,
e.g., dynamical mean field theory (DMFT) and Monte
Carlo methods provided impetus for studying the DE
model in detail. In real systems the double exchange in-
teraction is supplemented by [6] antiferromagnetic (AF)
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superexchange, electron-phonon interactions, and disor-
der, and some of these models have been studied within
various approximations. The primary limitation of cur-
rent methods, as we discuss in detail later, is their inabil-
ity to access transport properties taking spatial fluctua-
tions and disorder effects fully into account. In this context
our method, of constructing an approximate but explicit
classical spin Hamiltonian, allows a breakthrough. In the
present paper our detailed results are on the simplest case,
of the clean DE model. In earlier short publications we
have presented results on the disordered double exchange
model [7], and on magnetic phase competetion [8].

Let us define the general model to which our method
is applicable. H = Hel +HAF , with

Hel =
∑

〈ij〉,σ
tijc

†
iσcjσ +

∑

i

(εi − µ)ni − JH

∑

i

Si.�σi

HAF = JS

∑

〈ij〉
Si · Sj . (1)

The tij = −t are nearest neighbour hopping, on a square
or cubic lattice as relevant. εi is the on site potential,
uniformly distributed between ±∆/2, say, and JS is an
antiferromagnetic superexchange between the core spins.
JH is the ‘Hunds’ coupling, and we will work in the limit
JH/t→ ∞. The parameters in the problem are∆/t, JS/t,
and the carrier density n (or chemical potential µ). We
assume a classical core spin, setting |Si| = 1, and absorb
the magnitude of the spin in JS . All our energy scales,
frequency (ω) and temperature (T ), etc., will be measured
in units of t.
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For JH/t→ ∞ the fermion spin at a site is constrained
to be parallel to the core spin, gaining energy −JH/2,
while the ‘antiparallel’ orientation is pushed to +JH/2.
Since the hopping term tij itself is spin conserving, the
motion of the low energy, locally parallel spin, fermions
is now controlled by nearest neighbour spin orientation.
The strong magnetic coupling (JH) generates an effective
single band ‘spinless fermion’ problem [9], with core spin
orientation dependent hopping amplitudes. We will dis-
cuss the hopping term further on, for the moment let us
denote the renormalised (spin orientation dependent) hop-
ping amplitude as t̃, indicative of double-exchange physics.

The t̃−∆−JS problem has a variety of ground states.
(i) In the absence of JS , both the ‘clean’ and the dis-
ordered DE model has a ferromagnetic ground state, at
all electron density, with Tc reducing with increase in ∆.
(ii) The non disordered problem, with JS , leads to a va-
riety of phases [10,11] competing with ferromagnetism.
These are ferromagnetic and A, C, G type AF phases,
etc. There could also be more exotic ‘flux’, ‘skyrmion’ or
‘island’ phases in some parts of parameter space. The
boundaries between these phases are often first order
so there are regimes of macroscopic phase coexistence.
The specific set of possible AF phases depends on JS .
(iii) Weak disorder in the t̃− JS problem [8,12] converts
the regions of macroscopic phase separation into meso-
scopic phase coexistence of FM and AF clusters. (iv) For
some density and ∆ − JS combination, the ground state
could be a spin glass.

Although the phases above can be motivated easily,
the electrical character of the ground state, or the tem-
perature dependence of magnetic and transport proper-
ties, or the response to an applied magnetic field, are still
not well understood. A comprehensive understanding of
these effects within the relatively simple model in equa-
tion (1) would be the first step in approaching the even
richer variety of phases in the manganites, where the lat-
tice degrees of freedom are also active. This calls for a new
technique, handling spatial and thermal fluctuations, the
formation of clusters, and the effect of electron localisa-
tion. We propose and extensively benchmark such a real
space technique in this paper. To appreciate the need for a
new method let us quickly review the current approaches
to the Hamiltonian above.

1.1 Theoretical approaches

The approaches can be broadly classified into three cate-
gories. These are: (i) Exact variational calculations [13] at
T = 0, and generalisation [14–16] to T �= 0 via approxi-
mate mean field techniques. Let us call these methods vari-
ational mean field (VMF), for convenience. (ii) Dynami-
cal mean field theory (DMFT) based calculations [17,18]
which map on the lattice model to an effective single site
problem in a temporally fluctuating medium. Apart from
a formal limit d → ∞, where d is the number of spa-
tial dimensions, there are no further approximations in
the theory. (iii) Real space, finite size, Monte Carlo (MC)

simulations [19–23] of the coupled ‘spin-fermion’ problem,
treating the core spin as classical.

We can set a few indicators in terms of which the
strength and weakness of various approximations can be
judged. These are, tentatively:

1. The ability to access ground state properties.
2. Ability to handle fluctuations, and accuracy of Tc es-

timate.
3. The ability to access response functions, e.g., transport

and optical properties.
4. Treatment of disorder effects: Anderson localisation

and cluster coexistence.
5. Ability to handle Hubbard interactions, and quantum

effects in spins and phonons.
6. Computational cost and finite size effects.

1.1.1 Variational calculations

The variational calculations attempt a minimisation of the
energy of the (clean) system, at T = 0, with respect to a
variety of ordered spin configurations. The optimal config-
uration {Si}min for specified JS , µ, etc., is accepted as the
magnetic ground state. The energy calculations are rela-
tively straightforward, since the electron motion is in a
periodic background. The method has been used to map
out the ground state phase diagram of DE model with
AF superexchange in two and three dimension [10,11].
The approach, however, can only be approximately imple-
mented at finite temperature [14–16]. One has to calculate
a spin distribution instead of just targeting the ground
state, and estimating the energy of an electron system in
a spin disordered background is non trivial. Due to the
mean field character of VMF, fluctuation effects are lost
and transition temperatures are somewhat overestimated.
The method is focused on thermodynamic properties so
there is no discussion of transport, etc, within this scheme
(with one exception [14]). Disorder effects have been in-
cluded, approximately [14], in some of these calculations.
Variational methods can provide indication of phase coex-
istence [10,11] at T = 0, or, approximately, at finite tem-
perature [15,16], but cluster coexistence in a disordered
system is beyond its reach. The method has not been gen-
eralised to include quantum many body effects. Finite size
effects in this approach are small and the method is rela-
tively easy to implement.

1.1.2 Dynamical mean field theory

The single site nature of the DMFT approximation be-
comes exact in the limit of ‘high dimensions’. DMFT can
access both ground state and finite temperature proper-
ties, but the effective single site approximation cannot
capture spatial fluctuations, or a non trivial paramagnetic
phase. The ‘mean field’ character leads to an overestimate
of Tc, and also the inability to differentiate between two
and three dimensional systems. Being a Greens function
based theory DMFT can readily access response functions.
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However, effects like Anderson localisation or cluster co-
existence, which require spatial information, cannot be ac-
cessed [24]. The method can handle many body, Hubbard
like, interactions and quantum dynamics in all the vari-
ables involved, although such calculations are quite dif-
ficult. DMFT is defined directly in the thermodynamic
limit, so there are no finite size effects. The calculations
are relatively easy, when quantum many body effects are
not involved, and have been a major tool in exploring phe-
nomena in the manganites.

The limitations of DMFT become apparent as we con-
sider the more complicated phases that can arise in our
model. For instance in the strong disorder problem [7],
when there is a possibility of electron localisation, the
DMFT approach cannot access the insulating phase [24].
Neither can it access the spatially inhomogeneous nature
of freezing, and the persistence of strong spin correlations
above the bulk Tc. Similarly, in the problem of compet-
ing double exchange and superexchange, in the presence
of weak disorder, the system breaks up into interspersed
‘ferro-metallic’ and ‘AF-insulating’ regions [8,12]. A com-
plicated variant of this coexistence effect has been exten-
sively studied in manganite experiments [25]. The ‘single
site’ nature of DMFT cannot access cluster coexistence,
except possibly in an averaged sense. The transport and
metal-insulator transitions that can occur in this situation
also remain inaccessible. So, there are important qualita-
tive effects beyond the reach of DMFT, in systems where
spatial inhomogeneity is important.

1.1.3 Monte Carlo

The finite size real space approach uses the Metropolis
algorithm to generate equilibrium configurations of the
spins at a given temperature. Monte Carlo calculations
on classical systems with short range interactions involve
a cost O(zN) for a system update, with z being the co-
ordination number on the lattice and N the system size.
In the spin-fermion problem, however, the ‘cost’ of a spin
update at a site has to be computed from the fermion free
energy. If one uses direct diagonalisation of the Hamilto-
nian to accomplish this, the cost per site is O(N3), the
cost for a ‘system update’ is a prohibitive N4. All this is
after ignoring quantum many body effects. Current MC
approaches have not been generalised to handle Hubbard
like interactions.

Despite the severe computational cost, this method,
which we will call ED−MC (exact diagonalisation based
MC), has been successfully used to clarify several aspects
of manganite physics, and DE models in general. System
sizes accessible are ∼100 at most (recent algorithms [22]
have enhanced this somewhat), with 50−60 being more
typical. This method can provide an outline of the finite
temperature magnetic phase diagram, reveal major spec-
tral features, and even yield the basic signatures of cluster
coexistence. However, as is obvious from the accessible N ,
the finite size gaps are much too large for any reasonable
estimate of d.c transport properties, and the small lin-
ear dimension available, in two or three spatial dimension,

allows only a preliminary glimpse of coexistence physics.
The size limitation apart, the method is exact and compre-
hensive, with none of the problems of standard quantum
Monte Carlo (QMC). An extension of this approach to
larger system sizes would allow exploration of several un-
resolved issues in manganite physics. Apart from the ED
based MC, ‘hybrid MC’ results have been reported [11,23]
for the various phases of double exchange competing with
superexchange antiferromagnetism. No transport results,
however, have yet been presented within this framework.

Our method, described in the next section, is devel-
oped in this spirit. It is a real space Monte Carlo approach
with the key advantage that it avoids the iterative N3

diagonalisation step. We extract an effective Hamiltonian
for the core spins from the coupled spin-fermion problem,
through a self-consistent scheme. We can work at arbitary
temperature, handle strong disorder, and have better con-
trol on ‘cluster physics’ and transport properties due to
our significantly larger system size, N ∼ 103.

In the next section we describe our approximation and
its computational implementation in detail. Following that
we describe our results on the ‘clean’ DE model in two and
three dimension. We will discuss results on thermodynam-
ics, spectral features, resistivity and optical conductivity,
in most of these cases, and compare with exact simula-
tion results. We will also highlight systematically the size
effects in transport and optical properties.

2 Method

2.1 The JH/t → ∞ limit

We have already written down our basic Hamiltonian in
equation (1). The transformation and projection described
in the next couple of paragraphs is well known, but we
repeat them here for completeness.

Working at large JH/t it is useful to ‘diagonalise’ the
JHSi.�σi term first.The electron spin operator is �σi =∑

αβ c
†
iα�σαβciβ , where the σµ

αβ are the Pauli matrices, and
this 2 × 2 problem has eigenvalues ±JH/2. The eigen-
functions are linear combinations of the standard ‘up’
and ‘down’ z quantised fermion states at the site: γ†iµ =
∑

αA
i
µαc

†
iα. The lower energy state, γ†il, a linear combina-

tion of the form Ai
11c

†
i↑ +Ai

12c
†
i↓, is at energy −JH/2 and

has fermion spin parallel to the core spin Si. The orthogo-
nal linear combination, γ†iu, has fermion spin anti-parallel
to the core spin and is at energy +JH/2. The amplitudes
Ai

µα are standard [9].
In the γ basis, the Hunds coupling term becomes

−(JH/2)(γ†ilγil − γ†iuγiu) at all sites. The intersite hop-
ping term, however, picks up a non trivial depen-
dence on nearest neighbour spin orientation, tijc

†
iσciσ →∑

αβ tijg
αβ
ij γ

†
iαγjβ where α, β refer to the u, l indices. gαβ

ij

arises from the product of the two transformations at site i
and site j, and we will describe its specific form later. Since
the canonical transformation is local, the density operator∑

σ c
†
iσciσ → (γ†ilγil + γ†iuγiu).
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At finite JH/t this is just a transformation from the
‘lab frame’ to a local axis and the ‘up’ and ‘down’ spin
fermions get mapped to (l, u), but we still have to solve a
mixed ‘two orbital problem’. However, if JH/t→ ∞ then
all the ‘anti-parallel’ γ†iu|0〉 states get projected out and
we can work solely in the subspace of states created by γ†il.
In this space, the Hamiltonian assumes a simpler form:

Hel = −t
∑

〈ij〉
(gijγ

†
i γj + h.c.) +

∑

i

(εi − µ)ni

= −t
∑

〈ij〉
fij(eiΦijγ†i γj + h.c.) +

∑

i

(εi − µ)ni (2)

where we have dropped the superfluous ll label in gij ,
and absorbed −JH/2 in the chemical potential. The hop-
ping amplitude gij = fije

iΦij between locally aligned
states, can be written in terms of the polar angle (θi)
and azimuthal angle (φi) of the spin Si as, cos θi

2 cos θj

2 +
sin θi

2 sin θj

2 e
−i (φi−φj). It is easily checked that the ‘mag-

nitude’ of the overlap is fij =
√

(1 + Si · Sj)/2, while the
phase is specified by tanΦij = Im(gij)/Re(gij).

This problem can be viewed as a quadratic ‘spinless
fermion’ problem with core spin dependent hopping ampli-
tudes. The fermions move in the background of quenched
disorder εi and ‘annealed disorder’ in the {Si}, where the
second brackets indicate the full spin configuration. To
exploit the nominally ‘non interacting’ structure of the
fermion part we need to know the relevant spin configu-
rations, {Si}, or, more generally, the distribution P{Si},
controlling the probability of occurence of a spin configu-
ration.

2.2 Effective Hamiltonian for spins

The partition function of the system is Z =
∫ DSiTre−βH .

To extract P{Si} note that for a system with only spin
degrees of freedom, Z will have the form

∫ DSie
−βH{S}.

Comparing this with the partition function of the spin-
fermion problem we can use

∫
DSiTre−βH ≡

∫
DSie

−βHeff {S}

from which it follows that

Heff {Si} = − 1
β

log Tre−βH

P{Si} ∝ e−Heff {Si}. (3)

The trace is over the fermion degrees of freedom. In our
case

Heff = − 1
β

log Tre−βHel + JS

∑

〈ij〉
Si · Sj . (4)

The principal difficulty in a simulation, and quite gen-
erally in spin-fermion problems, is in evaluating the first

term on the r.h.s above for an arbitrary spin configuration.
This is the origin of the N3 factor in the exact MC. Our
key proposal, whose analytic and numerical justification
we provide later, is

− 1
β

log Tre−βHel ≈ −
∑

〈ij〉
Dijfij (5)

where Dij is an effective ‘exchange constant’ to be deter-
mined as follows. Define the operator Γ̂ij = (eiΦijγ†i γj +
h.c.). This enters the ‘hopping’ part of the electron
Hamiltonian. In any specified spin configuration {f, Φ}
we can calculate the correlation function Dij{f, Φ} =
Z−1

el TrΓ̂ije
−βHel , where Zel is the electronic partition

function in the specified background. The exchange
that finally enters Heff is the average of Dij{f, Φ}
over the assumed equilibrium distribution, i.e.: Dij =∫ DfDΦP{f, Φ}Dij{f, Φ} where we denote a spin config-
uration interchangeably by {f, Φ} or {S}. Qualitatively,
the ‘effective exchange’ is determined as the thermal aver-
age of a fermion correlator over the assumed equilibrium
distribution. Let us bring together the equations for ready
reference.

Hel = −t
∑

〈ij〉
fijΓ̂ij +

∑

i

(εi − µ)ni

Γ̂ij = (eiΦijγ†i γj + h.c.)

fij =
√

(1 + Si · Sj)/2

Heff {S} = − 1
β

log Tre−βHel + JS

∑

〈ij〉
Si · Sj

≈ −
∑

〈ij〉
Dijfij + JS

∑

〈ij〉
Si · Sj

Dij = 〈〈Γ̂ij〉〉Heff
. (6)

The ED−MC approach ‘solves’ for physical properties by
using the first four equations above: equilibriating the spin
system by using Heff , which itself involves a solution of
the Schrödinger equation for the electrons.

Our method approximates the ‘exact’ Heff by the
form specified in the fifth equation and computes an
exchange, rather than equilibrium configurations them-
selves, by fermion diagonalisation. The sixth equation in-
dicates how the ‘loop’ is closed. We will refer to this
method as “Self Consistent Renormalisation” (SCR) [26],
or the Heff scheme.

The nonlinear integral equation for the Dij is solved
to construct the ‘classical spin model’ for a set of elec-
tronic parameters, disorder realisation, and temperature.
Although the assumption about Heff seems ‘obvious’, and
in fact something similar, but simpler, had been explored
early on by Kubo and Ohata [4], and recently by Calderon
and Brey [20], the power of the method becomes appar-
ent in disordered systems or in the presence of competing
interactions. In these cases the solutions Dij can be spa-
tially strongly inhomogeneous, and dramatically temper-
ature dependent. The properties of such systems are far
from obvious.
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The equilibrium thermal average of any fermion op-
erator, or correlation function, Ô, can now be computed
using the self-consistent distribution as:

〈〈Ô〉〉 =
∫

D{S}P{S}O(S). (7)

The average O(S) is computed on a spin configuration
{Si}, with the configurations themselves picked according
to the effective Boltzmann weight ∝ e−βHeff .

We have not written the equation for µ. Since we would
typically want to work at fixed density rather than fixed
chemical potential, we employ the procedure above to cal-
culate n and iterate µ till the ‘target’ density is obtained.
In actual implementation, discussed later, the µ ‘loop’ and
the Dij ‘loop’ run simultaneously. We next discuss the an-
alytic underpinning of our method before moving to nu-
merical results.

2.3 Analytic limits

The central problem in DE models is construction of an
energy functional for arbitrary spin configurations {f, Φ}.
This information is contained in the fermion free energy,
−T log Tre−βHel as we have seen. We study two limits be-
low, where the leading effects are well captured by our
effective Hamiltonian.

2.3.1 Low temperature

If we ignore disorder and AF coupling, for simplicity, and
if the free energy of the fermions can be approximated by
the internal energy, then Dij{f, Φ} contains the necessary
information about the energy of any spin configuration:
E{f, Φ} ≡ Heff {f, Φ} =

∑
ij Dij{f, Φ}fij. The configura-

tion dependent correlation function, however, is hard to
calculate, since it requires a solution of the Schrödinger
equation for each spin configuration.

At low temperature, as the spins gradually randomise,
the system explores configurations {f, Φ} near the ground
state in the energy landscape. The relevant Dij{f, Φ} ∼
D0

ij +δDij{f, Φ}, where D0 is the ‘exchange’ computed on
the ground state, and δD is the variation. At low T , such
that the relevant δD 
 D0, we can neglect the variation,
δD, between configurations, and the ‘effective Hamilto-
nian’ assumes the form:

lim
T→0

Heff ∼ −
∑

〈ij〉
D0

ijfij

= −
∑

〈ij〉
D0

ij

√
(1 + Si · Sj)/2.

As we will see in the simulations this approximation is
remarkably good in the simple DE model almost upto
Tc/2. At higher T the ‘renormalisation’ of D becomes
important.

2.3.2 High temperature

For Tc/T 
 1, cumulant expansion yields an asymptoti-
cally exact effective Hamiltonian:

Heff ∼ limβt→0 − 1
β

ln Tr
(

1 + βH +
1
2
β2H2 + ...

)
.

The leading contribution from this is:

Hhigh T
eff ∼ −n(1 − n)βt2

∑

〈ij〉
f2

ij .

This apparently has a structure different from that of our
Heff , and additionally an ‘effective coupling’ falling off as
1/T . In fact our coupling D has the same form, as can
be checked by evaluating 〈〈Γ̂ij〉〉 in a high temperature
expansion. This quantity also depends on n(1 − n), to al-
low hopping, and falls off as 1/T since it is non local.
The self-consistent calculation of the effective exchange,
now based on the high temperature phase rather than the
ground state, ensures that the leading contribution to
the energy is well captured. The physical consequence of
the 1/T effective exchange is that the susceptibility of the
DE model does not have the Curie-Weiss form that one
expects for Heisenberg like models [27].

The next order in series expansion will generate terms
of the form:

∑

ijkl

fijfjkfklflie
i(φij+φjk+...),

summed over the minimal plaquette. Higher powers in βt
involve longer range excursion of the fermions, but the
limited data available from exact simulations suggests that
the critical properties of double exchange are similar to
that of short range spin models.

Although the procedure above can be extended to ex-
tract an ‘exact’ effective Hamiltonian to high order in βt,
we know of no such attempt. The only series expansion
results available are on the S = 1/2 model, directly cal-
culating thermodynamic properties [28].

2.4 Monte Carlo implementation

Since the ground state of the system is often not known
it is usual to start from high temperature and follow the
sequence below in generating the effective Hamiltonian
and studying equilibrium properties.

(i) We start at high temperature, T � Tc, assuming
some Dn

ij(T ), where n is the iteration index. and ‘equi-
libriate’ the system with this assumed effective Hamilto-
nian (not yet self-consistent). (ii) We compute the average
〈〈eiΦijγ†i γj +h.c.〉〉 over these (pseudo) equilibrium config-
urations. This generates Dn+1

ij (T ). (iii) Compare the gen-
erated exchange with the assumed exchange at each bond.
Accept if within tolerance. If converged, then Dij rep-
resents the correct ‘exchange’ at that temperature. Else,
replace Dn

ij by Dn+1
ij . (iv) At each temperature and itera-

tion, adjust µ as necessary to keep n constant.
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At convergence fermion properties can be calculated
and averaged over equilibrium MC configurations of the
spin model. For a disordered system (∆ �= 0), the thermal
cycle above has to be repeated for each realisation of dis-
order. In the clean problem, translation invariance forces
the exchange to be uniform at all bonds, while ∆ �= 0
generates a bond disordered spin model.

The computational effort needed in the ED−MC ap-
proach is ∝ NMC × N4, at each temperature, where
NMC is the number of MC sweeps (103−104), and N
the size of the system (actually the Hilbert space dimen-
sion). As we have mentioned before, current resources al-
low Nmax ∼ 100. Within our Heff scheme the MC con-
figurations are generated using a short range spin model,
with cost O(N). The actual cost is in determining the ex-
change: this is ∝ Niter × Nav × N3, where Niter is the
number of iterations needed to get a converged solution,
with ∼10% accuracy per bond, and Nav is the averaging
needed per iteration for generating a reasonable ‘equilib-
rium average’. Typically Niter ∼ 4 and Nav ∼ 50.

We can roughly compare the computational cost of
ED−MC with the Heff scheme. For ED−MC, the time
required is, τN ∼ NMC ×N4 at a given temperature. For
the Heff scheme, τN ∼ Niter ×Nav × N3. Putting in the
numbers, if resources allow N ∼ 100 for the ED−MC ap-
proach, the same resource will allow N ∼ 1000 within the
Heff scheme. In terms of computation time, Heff is no
more expensive than standard ‘disorder average’ in elec-
tronic systems.

2.5 Physical properties at equilibrium

The major physical properties we compute at equilibrium
are optical conductivity and d.c resistivity, the density of
states (DOS), and the magnetic structure factor.

(i) We estimate the d.c conductivity, σdc, by using the
Kubo-Greenwood expression [29] for the optical conduc-
tivity. In a disordered non interacting system we have:

σ(ω) =
A

N

∑

α,β

(nα − nβ)
|fαβ |2
εβ − εα

δ(ω − (εβ − εα)). (8)

The constant A = (πe2)/�a0. The matrix element
fαβ = 〈ψα|jx|ψβ〉 and we use the current operator jx =
ia0

∑
i,σ(c†i+xa0,σci,σ − h.c.). The ψα etc. are single par-

ticle eigenstates, for a given equilibrium configuration,
and εα, εβ are the corresponding eigenvalues. The nα =
θ(µ− εα), etc., are occupation factors.

The conductivity above is prior to thermal or disorder
averaging. Our simulations are in a square or cube geom-
etry with periodic boundary condition. Given the finite
size, the δ function constraint in σ(ω) cannot be satisfied
for arbitrary ω. We use the following strategy: (i) calculate
σint(ω) =

∫ ω′

0 σ(ω′)dω′, at three equispaced low frequency
points, ω1, ω2, ω3, by summing over the delta functions in
the appropriate range... (ii) thermally average the σint(ω)
over the equilibrium configurations, (iii) invert: calculate

a numerical derivative via three point interpolation, im-
plementing σ̄(ω) = dσ̄int(ω)/dω. The ‘bar’ on σ indicates
thermal average. What we call the ‘d.c. resistivity’ is ac-
tually the inverse of a low frequency optical conductivity,
computed by the method above. We systematically check
the stability of our results by repeating the calculation for
a sequence of system size (and reducing ω1, ω2, ω3 accord-
ingly). For N ∼ 1000, the ‘d.c’ conductivity is actually
computed at ω ∼ 0.06.

Our transport calculation method and some bench-
marks will be discussed in detail elsewhere [30]. To con-
vert to ‘real’ units, note that our conductivity results are
in units of (πe2)/�a0. Since the Mott ‘minimum’ metallic
conductivity, in three dimension, is ∼ (0.03e2/�a0), σ = 1
on our scale roughly corresponds to 102σMott. The full
σ(ω) is computed by computing σint(ω) defined above,
thermal average, and inversion.

(ii) Each equilibrium magnetic configuration leads to
a ‘DOS’ of the form

∑
α δ(ω − εα), where εα are the sin-

gle particle eigenvalues in that background. The thermally
averaged DOS that we show involves a Lorentzian broad-
ening of each δ function, as indicated below.

N(ω) ≈ 1
Neq

∑

eq

∑

α

(Γ/π)
(ω − εα)2 + Γ 2

. (9)

The sum runs over the eigenvalues obtained in any spin
configuration, and summed over equilibrium configura-
tions. We use Γ ∼ 0.1 in our results, although much
smaller Γ would still give a smooth spectra at high T .

(iii) The magnetic structure factor is calculated as

S(Q) =
1

NeqN2

∑

eq

∑

ij

〈Si · Sj〉eiQ·(ri−rj) (10)

where i, j run over the entire lattice, and the outer average
is over equilibrium configurations.

3 Results

In this section we provide a comprehensive comparison of
results based on the ‘exact’ scheme (ED−MC) and our
effective Hamiltonian approach, for the ‘clean’ DE model,
and and extend the study to large sizes using the Heff

scheme. Most of our results are on three dimensional sys-
tems, where the simulations are more difficult and the
results physically more relevant, and we show only lim-
ited data in two dimensions. The model is translation in-
variant, there are no competing interactions, and the low
temperature phase is a ferromagnet.

3.1 Magnetism and thermodynamics

We begin with a comparison of the magnetisation, m(T ),
obtained via ED-MC and SCR on 8×8 lattices in 2d, and
43 systems in 3d, with periodic boundary condition in all
directions. Figure 1 compares the m(T ) obtained via the
two schemes at three electron densities.
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Fig. 1. Magnetism in 2d and 3d: open symbols are for
ED−MC, the dotted lines indicate the SCR results, (a) 2d,
(b) 3d. The insets show the Tc obtained via ED-MC (symbols)
vs. SCR results (dotted lines).

Note at the outset that both the DE model and our
Heff are O(3) symmetric and are not expected to have
long range order at finite T in 2d (in an infinite system).
However, as has been demonstrated in the case of the two
dimensional classical Heisenberg model [31], O(3) models
have exponentially large correlation length at low temper-
ature in 2d. For a nearest neighbour classical Heisenberg
model with |Si| = 1, and exchange J , the low T correlation
length ξ(T ) ∼ 0.02e2πJ/T . So, for T 
 J even large finite
lattices would look ‘fully polarised’ and one would need
to access exponentially large sizes to see the destruction
of long range order.

This allows us to define a (weakly size dependent)
‘characteristic temperature’ Tch(n) for the 2d DE model
which marks the crossover from paramagnetic to a nom-
inally ‘ordered’ phase. The true ordering temperature of
strongly anisotropic DE systems, e.g., the layered mangan-
ites, which the planar model mimics, would be determined
by the interplane coupling, but the in plane transport
would be dictated mainly by the 2d fluctuations, as here.

The difference between ED-MC and SCR results in 2d,
Figure 1a, is most prominent at the highest density, n =
0.41, where the Tch inferred from these small size calcula-
tions differ by 15−20%. At lower density the difference is
still visible but much smaller. We have indicated the Tch

scales inferred from the two schemes in the inset in Fig-
ure 1a. The difference between the two schemes is usually
largest in clean high density systems, as we will see also
in the three dimensional case. However, over the entire
density range, the maximum deviation is ∼20%.

Notice that at all n, the low temperature m(T ) ob-
tained via Heff corresponds almost exactly with results
based on ED−MC. This works upto ∼ Tch/2. The high
temperature result within the two schemes is also in close
correpondence but that is better illustrated in the ther-
modynamic data, Figure 2, which we will discuss later.

Figure 1b shows the results on magnetisation in the
three dimensional problem at three densities, comparing
results based on ED−MC and Heff . As in two dimension
the difference in the estimated Tc is greatest near the band
center, being ∼15−20%, the correspondence improving as
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Fig. 2. Comparing thermodynamic indicators between
ED-MC and the Heff scheme in 3d: (a) effective exchange,
(b) internal energy, (c) chemical potential and (d) band edge.
Displayed value is actual value + shift. System size 4 × 6 × 4.
Open symbols: ED-MC, dotted lines: SCR.

we move to n � 0.2. As before, the exact and approximate
m(T ) match at low T for all densities.

Figure 2 which shows the thermodynamic indicators in
the 3d case reveals thatDij itself is virtually indistinguish-
able in the two schemes. The correlationDij = 〈〈Γ̂ij〉〉 can
be evaluated as an equilibrium average in an exact simu-
lation also, although there it does not feed back into the
calculation. The match between the D’s computed in two
different schemes, and across the density range, suggests
that the difference in m(T ) seen near half-filling is not due
to different numerical values of D, but the assumed form
of Heff . We either need a more sophisticated definition of
the finite temperature D, or a different form of Heff to
bring the high density results of Heff in closer correspon-
dence with ED−MC. Notice that the D’s are only weakly
temperature dependent and the m(T ) at low temperature
could have been obtained by setting D(T ) = D(0). In fact
over the temperature range 0− Tc the qualitative physics
can be accessed without the thermal ‘renormalisation’ of
the exchange. However, for T � Tc the renormalisation is
important, as suggested earlier by the high temperature
expansion.

The results on all thermodynamic indicators, D(T ),
E(T ), µ(T ) and Eb(T ), Figure 2, show the close corre-
spondence between results of the exact and approximate
scheme. The D’s are almost temperature independent
in the range 0 − Tc and hardly distinguishable between
ED−MC and Heff , suggesting that effects beyond our ef-
fective Hamiltonian −D∑

fij is needed to accurately de-
scribe the magnetic transition at the band center. The
overall behaviour is similar in 2d as well so we are not
presenting the 2d data.

We extend the Heff scheme to large system size, and
study the magnetism in 322 and 103 lattices. Figure 3
shows the results on m(T ), and the inset shows the Tc in-
ferred from these simulations. The maximum Tc, occuring
at band center is ∼0.2t which, with t ∼ (100−150) meV,
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Fig. 3. Magnetisation based on Heff in (a) 2d with 30×30 and
(b) 3d with 10×10×10 systems. Insets show the characteristic
temperature scales inferred from m(T ).
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Fig. 4. Thermodynamic properties in the 3d case computed
with Heff , system size N = 10 × 10 × 10.

will be in the range 200−300 K. These numbers are typical
of high electron density Hunds coupled systems, and are in
the right ballpark when compared to the manganites [32].

Figure 4 shows the thermodynamic indicators com-
puted within the Heff scheme on 103 in 3d. The strong
temperature dependence in µ and Eb, seen also at small
sizes, arise from the ‘band narrowing’ effect of spin dis-
order which reduces the mean hopping amplitude with
increasing temperature.

3.2 Density of states

Figure 5 shows the density of states (DOS) computed at
n = 0.3, four temperatures, and for a small, 43, and a
large, 103, system. The mean level spacing at high tem-
perature (where the spins are completely disordered) is
∼12/L3 which is ∼0.01 at L = 10 and ∼0.18 at L = 4.
For T → 0, the polarised ferromagnetic state leads to
large degeneracy and the level spacings could be more
than 10 times larger than the high temperature value. We
have broadened all δ functions by Γ = 0.1, so that the
high temperature L = 4 spectra looks reasonable. With
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Fig. 5. DOS in three dimension. Results on Heff with 4×6×4
and 10 × 10 × 10 geometry, n = 0.3.

this broadening the L = 10 data looks reasonable even
below Tc.

This comparison highlights the unreliability of small
size data in inferring spectral features over most of the in-
teresting temperature range. Small sizes can often provide
reasonable results on energetics, but on spectral features
and, more importantly, on low frequency transport, they
are completely unreliable.

3.3 Optical properties

Figure 6 shows the optical conductivity, σ(ω). The optical
conductivity is a vital probe of charge dynamics in the sys-
tem. Our data in the main panel, Figure 6, is for a 8×8×8
geometry. At the lowest temperature there is an artificial
‘hump’ in σ(ω) which we think arises because the polarised
three dimensional system has large degeneracy, and finite
size effects are stronger than in two dimension. Never-
theless, there are some notable features in σ(ω), (i) the
conductivity is Drude like, (ii) there is rapid reduction
in low frequency spectral weight with increasing tempera-
ture, with some transfer to high frequency, (iii) the weight
in σ(ω) is not conserved with increasing temperature, the
loss is related to the suppression of kinetic energy with
increasing spin disorder.

3.4 Resistivity

Finally, we look at the resistivity, which, surprisingly, has
seen little discussion. Figure 7 shows the correlation be-
tween the ferromagnet to paramagnet transition and the
rise in ρ(T ). We have normalised ρ(T ) in Figures 7a and 7b
by the value at T = 0.4. The ‘absolute’ resistivity is shown
in Figures 7c and 7d. Unlike mean field treatments which
treat the paramagnetic phase as completely ‘uncorrelated’
and would yield a ‘flat’ resistivity for T > Tch (or Tc),
there is a significant increase in ρ(T ) with rising temper-
ature in the ‘paramagnetic’ phase as the short range spin
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size dependence in the resistivity (see text). (c, d) Density de-
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correlation is gradually lost and the system heads towards
the fully spin disordered phase. The general rise in ρ(T ) in
the paramagnetic phase happens in both 2d and 3d, but
surprisingly in 2d most of the rise seems to occur after the
drop in m(T ), rather than across Tc as one sees in three
dimension.

For a check on the reliability of the computed ρ(T )
the inset in Figure 7a shows the ‘resistivity’ computed on
L × L geometry for L = 8, 16, 32 across the full tempera-
ture range. The L = 8 result has the same problem that
we discussed in the context of σ(ω). The system essen-
tially behaves as an ‘insulator’ at low T due to the finite
size gap. The L = 16 data has similar upturn, but at a
lower temperature. The data at L = 24 (not shown) and
L = 32 are stable down to T ∼ 0.02 and almost coincide,
suggesting that except at very low temperature, results on
these sizes are representative of bulk transport.
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Fig. 8. Specific heat and dρ/dT , at n = 0.3 in (a) 2d, and
(b) 3d. System sizes used are same as in panels 7 (c, d).

The resistivity in the 3d case differs from 2d in that
the major rise in ρ(T ) occurs around Tc in the 3d case,
while it occurs beyond Tch in the 2d case. Figure 7b shows
m(T ) correlated with the normalised ρ(T ), and the rise is
reminiscent of the Fisher-Langer result [33] in weak cou-
pling electron-spin systems. The inset in Figure 7b shows
the stability of the transport result in 3d for L � 8, and
the unreliability for L ∼ 4.

Figures 7c and 7d, show the absolute resistivity for a
few densities. The ‘high temperature’ 3d resistivity, at T ∼
3Tc is approximately 15−25, in the density range shown,
which in real units would be ∼(1−2) mΩ cm, roughly the
high T resistivity of La1−xSrxMnO3 for x � 0.4.

Figure 8 shows the correlation between dρ/dT and the
specific heat in 2d and 3d. Above Tc and in 3d, panel (b),
dρ/dT seems to match CV very well, as expected from
the perturbative results of Fisher and Langer [33]. In 2d
however the correspondence is poor, probably due to in-
cipient localisation effects in the resistivity. For T ≤ Tc,
even in 3d, the behaviours of CV and dρ/dT are different
because the rise in m(T ) affects the scattering rate, as is
already known [33].

The validity of the ‘weak coupling’ results of Fisher-
Langer, originally illustrated for a Heisenberg model, in
this ‘strong coupling’ spin-fermion system may seem sur-
prising. There are two reasons why the correspondence
holds here: (i) the resistivity in the DE model arises from
spin disorder induced weak fluctuations in the hopping
amplitude, and is in the perturbative regime, and (ii) our
magnetic model, Heff , is effectively short range, and the
critical properties of spin fluctuations are the same as in
the Heisenberg model.

4 Conclusion

In this paper we proposed a new Monte Carlo technique
that allows access to large system sizes but retains the cor-
related nature of spin fluctuations in the double exchange
model. Combining this MC technique with a transport cal-
culation based on the exact Kubo formula we presented
a comprehensive solution of the model, including mag-
netism, thermodynamics, spectral features, transport, and
optics.
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This paper benchmarked the scheme for the clean dou-
ble exchange model, where the complicated consistency
and thermal renormalisation involved in the scheme are
not crucial for a qualitative understanding. However, when
we move to disordered systems [7], or non ferromagnetic
ground states, or the regime of multiphase coexistence [8],
the full power of a ‘bond disordered’ effective Hamiltonian,
with non trivial spatial correlation between the bonds, be-
comes apparent.

For the clean ferromagnetic case one may try to im-
prove the self-consistency scheme to obtain better corre-
spondence [20,34] with ED−MC results. However, given
the complexity of the current scheme, and the range of
possibilities that it offers, we think it is more important
to exploit the present scheme to resolve the outstanding
qualitative issues first. Finally, although the entire scheme
is presently implemented numerically, it would be useful
to make analytic approximations within this framework
to create greater qualitative understanding.

We acknowledge use of the Beowulf cluster at HRI.
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